THE FUNCTION (bx − ax)/x: LOGARITHMIC CONVEXITY AND APPLICATIONS TO EXTENDED MEAN VALUES
نویسنده
چکیده
In the present paper, we first prove the logarithmic convexity of the elementary function b x −a x x , where x 6= 0 and b > a > 0. Basing on this, we then provide a simple proof for Schur-convex properties of the extended mean values, and, finally, discover some convexity related to the extended mean values.
منابع مشابه
Four applications of majorization to convexity in the calculus of variations
The resemblance between the Horn-Thompson theorem and a recent theorem by Dacorogna-Marcellini-Tanteri indicates that Schur convexity and the majorization relation are relevant for applications in the calculus of variations and its related notions of convexity, such as rank-one convexity or quasiconvexity. We give in theorem 6.6 simple necessary and sufficient conditions for an isotropic object...
متن کاملSchur-convexity and Schur-geometrically concavity of Gini means
The monotonicity and the Schur-convexity with parameters (s, t) in R2 for fixed (x, y) and the Schur-convexity and the Schur-geometrically convexity with variables (x, y) in R++ for fixed (s, t) of Gini mean G(r, s;x, y) are discussed. Some new inequalities are obtained.
متن کاملDisplacement convexity of generalized relative entropies. II
We introduce a class of generalized relative entropies (inspired by the Bregman divergence in information theory) on the Wasserstein space over a weighted Riemannian or Finsler manifold. We prove that the convexity of all the entropies in this class is equivalent to the combination of the non-negative weighted Ricci curvature and the convexity of another weight function used in the definition o...
متن کاملCharacterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملOn Multi-order Logarithmic Polynomials and Their Explicit Formulas, Recurrence Relations, and Inequalities
In the paper, the author introduces the notions “multi-order logarithmic numbers” and “multi-order logarithmic polynomials”, establishes an explicit formula, an identity, and two recurrence relations by virtue of the Faà di Bruno formula and two identities of the Bell polynomials of the second kind in terms of the Stirling numbers of the first and second kinds, and constructs some determinantal...
متن کامل